
Robust Python Programs

EuroPython 2010

Stefan Schwarzer, SSchwarzer.com
info@sschwarzer.com

Birmingham, UK, 2010-07-20

Overview

Introduction

Indentation

Objects and names

Functions and methods

Exceptions

exec and eval

subprocess module

for loops

Strings

Optimization

Tools for code analysis

Summary

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 2 / 39

Introduction

Python is a versatile language

Concentration on the problem, not the language

Compact solutions

But: some mistakes occur frequently in Python programs

Mainly by beginners and occasional programmers

This talk (hopefully) describes the most important concepts,
the most frequent errors and how to avoid them

Talk discusses Python 2.x because it is commonly the default
version on Posix systems

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 3 / 39

Introduction
Simplifications and Robustness

Many points are, at first sight, more associated with
“simplification” than with error prevention

However, simplifications avoid more complicated code

Code that is less complicated is easier to write and to read
(important for subsequent changes)

Simplifications may thus lead to more robust code

But only if the code is easier to understand
and not just shorter

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 4 / 39

Indentation
Basics

Code blocks are denoted by the same indentation of the
contained statements

Indentation consists of “horizontal whitespace” (space and
tab characters)

Theoretically, both can be mixed—but should not

If spaces and tabs are mixed, hard-to-spot program errors
are possible

But usually rather syntax errors because of inconsistent
indentation

For example, an if statement must be followed by indentation
and an except clause must be preceded by “dedentation”

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 5 / 39

Indentation
Avoiding and Finding Problems

Recommended: use exactly four spaces per indentation level

See PEP 8, http://www.python.org/dev/peps/pep-0008

Spaces often used automatically by editors if file ends with .py

If not, configure the editor to insert four spaces if the tab key
is pressed

If you think you have indentation-related problems . . .

Make spaces and tabs visible in the editor, for example with
:set list in Vim

Use find and grep:
find . -name "*.py" -exec grep -EnH "\t" {} \;

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 6 / 39

http://www.python.org/dev/peps/pep-0008

Identity Operator

Checks if two objects are identical

In other words, whether they are actually the same object

In that case returns True, otherwise False

The operator is the keyword is

Identity is not the same as equality!

>>> 1 == 1.0

True

>>> 1 is 1.0

False

>>> [1] == [1]

True

>>> [1] is [1]

False

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 7 / 39

Names and Assignments
Basics

Names (“variables”) do not contain objects in Python

They refer (point) to objects

x = 1.0 binds the name x to the object 1.0

In an expression (for example on the right hand side of an
assignment) a name stands for the object the name refers to

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 8 / 39

Names and Assignments
Immutable and Mutable Objects

Immutable objects usually have simple data types;
examples are: 7.0, "abc", True

Mutable objects are composite data, for example lists or
dictionaries

>>> L = []

>>> L.append(2)

>>> L

[2]

>>> L[0] = 3

>>> L

[3]

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 9 / 39

Names and Assignments
Immutable Objects

>>> x = 1.0

>>> y = x

>>> x is y

True

>>> y = 1.0

>>> x is y

False

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 10 / 39

Names and Assignments
Immutable Objects

>>> x = 1.0

>>> y = x

>>> x is y

True

>>> y = 1.0

>>> x is y

False

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 10 / 39

Names and Assignments
Immutable Objects

>>> x = 1.0

>>> y = x

>>> x is y

True

>>> y = 1.0

>>> x is y

False

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 10 / 39

Names and Assignments
Mutable Objects

>>> L1 = [1]

>>> L2 = L1

>>> L1.append(2)

>>> L1

[1, 2]

>>> L2

[1, 2]

>>> L2 = [5, 6]

>>> L1.append(3)

>>> L1

[1, 2, 3]

>>> L2

[5, 6]

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 11 / 39

Names and Assignments
Mutable Objects

>>> L1 = [1]

>>> L2 = L1

>>> L1.append(2)

>>> L1

[1, 2]

>>> L2

[1, 2]

>>> L2 = [5, 6]

>>> L1.append(3)

>>> L1

[1, 2, 3]

>>> L2

[5, 6]

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 11 / 39

Names and Assignments
Mutable Objects

>>> L1 = [1]

>>> L2 = L1

>>> L1.append(2)

>>> L1

[1, 2]

>>> L2

[1, 2]

>>> L2 = [5, 6]

>>> L1.append(3)

>>> L1

[1, 2, 3]

>>> L2

[5, 6]

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 11 / 39

Names and Assignments
Mutable Objects

>>> L1 = [1]

>>> L2 = L1

>>> L1.append(2)

>>> L1

[1, 2]

>>> L2

[1, 2]

>>> L2 = [5, 6]

>>> L1.append(3)

>>> L1

[1, 2, 3]

>>> L2

[5, 6]

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 11 / 39

Names and Assignments
Mutable Objects

>>> L1 = [1]

>>> L2 = L1

>>> L1.append(2)

>>> L1

[1, 2]

>>> L2

[1, 2]

>>> L2 = [5, 6]

>>> L1.append(3)

>>> L1

[1, 2, 3]

>>> L2

[5, 6]

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 11 / 39

Names and Assignments
Combination of Immutable and Mutable Objects

>>> L = [1]

>>> t = (L,)

>>> t.append(2)

Traceback (most recent call last):

File "<ipython console>", line 1, in <module>

AttributeError: ’tuple’ object has no attribute ’append’

>>> L.append(2)

>>> t

([1, 2],)

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 12 / 39

Names and Assignments
Combination of Immutable and Mutable Objects

>>> L = [1]

>>> t = (L,)

>>> t.append(2)

Traceback (most recent call last):

File "<ipython console>", line 1, in <module>

AttributeError: ’tuple’ object has no attribute ’append’

>>> L.append(2)

>>> t

([1, 2],)

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 12 / 39

Names and Assignments
Combination of Immutable and Mutable Objects

>>> L = [1]

>>> t = (L,)

>>> t.append(2)

Traceback (most recent call last):

File "<ipython console>", line 1, in <module>

AttributeError: ’tuple’ object has no attribute ’append’

>>> L.append(2)

>>> t

([1, 2],)

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 12 / 39

Names and Assignments
Combination of Immutable and Mutable Objects

>>> L = [1]

>>> t = (L,)

>>> t.append(2)

Traceback (most recent call last):

File "<ipython console>", line 1, in <module>

AttributeError: ’tuple’ object has no attribute ’append’

>>> L.append(2)

>>> t

([1, 2],)

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 12 / 39

Comparisons
is None Vs. == None

is checks for identity, == for equality

Recommended: value is None

Reason: classes can modify the result of a comparison

>>> class AlwaysEqual(object):

... def __eq__(self, operand2):

... return True

>>> always_equal = AlwaysEqual()

>>> always_equal == None

True

>>> None == always_equal

True

>>> always_equal is None

False

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 13 / 39

Comparisons
“Trueness” and “Falseness”

Of the built-in data types, numerical zero values (e. g. 0.0),
empty strings ("", u""), empty containers ([], (), {},
set(), frozenset()), None and False are false.
All other objects of built-in types are true.

As a consequence, all these if conditions can be simplified:
if value == True → if value

if my list != [] → if my list

if my list == [] → if not my list

if len(my list) == 0 → if not my list

if string == u"" → if not string

etc.

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 14 / 39

Comparisons
if list etc.

What is so great about if list etc.? ;-)

Shorter

But more understandable (robust)?

Yes—by rephrasing the condition

Not “are values in this list?” but “are there any . . . ?”

Example:

def show names(names):

if names:

print "\n".join(names)
else:

print "no names"

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 15 / 39

Functions and Methods
Function Object Vs. Call

Using a function (or method) without parentheses
just gives us the function object

fobj = open(filename, ’rb’)

read first 100 bytes

data = fobj.read(100)

fobj.close

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 16 / 39

Functions and Methods
Function Object Vs. Call

Using a function (or method) without parentheses
just gives us the function object

fobj = open(filename, ’rb’)

read first 100 bytes

data = fobj.read(100)

fobj.close() # call it!

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 16 / 39

Functions and Methods
Default Arguments

Default arguments are only evaluated upon the definition,
i. e. when the function or method is parsed and compiled

Not upon each call

>>> def append_to_list(obj, L=[]):

... L.append(obj)

... return L

...

>>> append_to_list(2)

[2]

>>> append_to_list(5)

[2, 5]

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 17 / 39

Functions and Methods
Names in a Call

In a call of a function or method the argument names can be
written explicitly

Therefore the order of the arguments in a call can be
different from their order in the definition

The following calls are equivalent:

>>> def f(a, b, c):

... return [a, b, c]

...

>>> f(1, 2, 3)

[1, 2, 3]

>>> f(a=1, b=2, c=3)

[1, 2, 3]

>>> f(b=2, c=3, a=1)

[1, 2, 3]

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 18 / 39

Functions and Methods
Arguments “Passed Through”

Passing arguments “through” a function can be useful

>>> def f(a, b, c):

... print a, b, c

...

>>> def g(*args, **kwargs):

... print "Positional arguments:", args

... print "Keyword arguments:", kwargs

... f(*args, **kwargs)

...

>>> g(1, c=3, b=2)

Positional arguments: (1,)

Keyword arguments: {’c’: 3, ’b’: 2}

1 2 3

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 19 / 39

Functions and Methods
Passing Arguments by Name Binding

Passing an argument works like an assignment

Name is attached to an object

>>> def delete_list(list_):

... "Delete all elements from the list."

... list_ = [] # new local name

...

>>> a_list = [1, 2, 3]

>>> delete_list(a_list)

>>> a_list

[1, 2, 3] # no change!

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 20 / 39

Functions and Methods
Passing Arguments by Name Binding

Passing an argument works like an assignment

Name is attached to an object

>>> def delete_list(list_):

... "Delete all elements from the list."

... list_[:] = [] # changed argument in-place

...

>>> a_list = [1, 2, 3]

>>> delete_list(a_list)

>>> a_list

[] # now changed

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 20 / 39

Exceptions
Why Exceptions?

Error handling in some languages (Shell, C, . . .) is done
with error codes

Possible problems with error codes:

Error handling makes return values and thus their handling
more complex (e. g. using a tuple instead of a simple type)

Error codes may have to be “passed down” a long call chain

If a check for an error code is forgotten, undefined
consequences occur, maybe to be noticed only much later

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 21 / 39

Exceptions
Missing or Too Generic Exception Class

try:

do something ...

except:

error handling

Same issue with except Exception:

Problem: some exceptions are caught unintentionally
(NameError, AttributeError, IndexError, . . .)

This easily masks programming errors

try:

fobj = opne("/etc/passwd")

...

except:

print "File not found!"

List of exception classes at
http://docs.python.org/library/exceptions.html

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 22 / 39

http://docs.python.org/library/exceptions.html

Exceptions
Missing or Too Generic Exception Class

try:

do something ...

except:

error handling

Same issue with except Exception:

Problem: some exceptions are caught unintentionally
(NameError, AttributeError, IndexError, . . .)

This easily masks programming errors

try:

fobj = opne("/etc/passwd")

...

except:

print "File not found!"

List of exception classes at
http://docs.python.org/library/exceptions.html

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 22 / 39

http://docs.python.org/library/exceptions.html

Exceptions
Missing or Too Generic Exception Class

try:

do something ...

except:

error handling

Same issue with except Exception:

Problem: some exceptions are caught unintentionally
(NameError, AttributeError, IndexError, . . .)

This easily masks programming errors

try:

fobj = opne("/etc/passwd")

...

except:

print "File not found!"

List of exception classes at
http://docs.python.org/library/exceptions.html

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 22 / 39

http://docs.python.org/library/exceptions.html

Exceptions
Missing or Too Generic Exception Class

try:

do something ...

except:

error handling

Same issue with except Exception:

Problem: some exceptions are caught unintentionally
(NameError, AttributeError, IndexError, . . .)

This easily masks programming errors

try:

fobj = opne("/etc/passwd")

...

except:

print "File not found!"

List of exception classes at
http://docs.python.org/library/exceptions.html

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 22 / 39

http://docs.python.org/library/exceptions.html

Exceptions
Too Much Code in the try Clause

def age from db(name):

...

try:

person[name][age] = age from db(name)

except KeyError:

print ’No record for person "%s"’ % name

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 23 / 39

Exceptions
Too Much Code in the try Clause

def age from db(name):

return cache[name]

try:

person[name][age] = age from db(name)

except KeyError:

print ’No record for person "%s"’ % name

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 23 / 39

Exceptions
Too Much Code in the try Clause

def age from db(name):

return cache[name]

do not mask possible exception

db age = age from db(name)

try:

person[name][age] = db age

except KeyError:

print ’No record for person "%s"’ % name

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 24 / 39

Exceptions
Freeing Resources

Make sure there are no resource leaks:

db conn = connect(database)

try:

database operations

...

finally:

db conn.rollback()

db conn.close()

Since Python 2.5 the with statement can be used
for files and sockets

from __future__ import with_statement # for Py 2.5

with open(filename) as fobj:

data = fobj.read()

file after ‘with‘ statement automatically closed

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 25 / 39

Exceptions
Multiple Exceptions in One except Clause

try:

can raise ValueError or IndexError

...

except ValueError, IndexError:

error handling for ValueError and IndexError

...

Problem: without parentheses, IndexError in the error case
actually is a ValueError object

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 26 / 39

Exceptions
Multiple Exceptions in One except Clause

try:

can raise ValueError or IndexError

...

except ValueError, IndexError:

error handling for ValueError and IndexError

...

Problem: without parentheses, IndexError in the error case
actually is a ValueError object

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 26 / 39

Exceptions
Multiple Exceptions in One except Clause

try:

can raise ValueError or IndexError

...

except (ValueError, IndexError):

error handling for ValueError and IndexError

...

Problem: without parentheses, IndexError in the error case
actually is a ValueError object

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 26 / 39

exec and eval
Problems

exec and eval interpret a string as Python code and execute it

Problems:

Code becomes more difficult to read

Indentation errors are more likely

Syntax check is delayed until exec/eval is hit

Prone to security flaws

Limited code analysis by tools

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 27 / 39

exec and eval
Complex Code

def make_adder(offset):

ensure consistent identation

code = """

def adder(n):

return n + %s

""" % offset

exec code

return adder

new_adder = make_adder(3)

print new_adder(2) # 3 + 2 = 5

def value_n(obj, n):

return eval("obj.value%d" % n)

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 28 / 39

exec and eval
Avoiding Complex Code

Include functions, classes etc. in other functions or methods

def make_adder(offset):

def adder(n):

return n + offset

return adder

new_adder = make_adder(3)

print new_adder(2) # 3 + 2 = 5

Use getattr, setattr and delattr

def value_n(obj, n):

return getattr(obj, "value%d" % n)

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 29 / 39

exec and eval
Security Flaws

Example: Function plotter on a website

Function plotter

f(x) = 2*x + 3 Show

def plot_function(func):

points = []

for i in xrange(-100, 101):

x = 0.1 * i

y = eval(func)

points.append((x, y))

plot(points)

Not a nice function:

f(x) = os.system(”rm -rf *”) Show

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 30 / 39

exec and eval
Security Flaws

Example: Function plotter on a website

Function plotter

f(x) = 2*x + 3 Show

def plot_function(func):

points = []

for i in xrange(-100, 101):

x = 0.1 * i

y = eval(func)

points.append((x, y))

plot(points)

Not a nice function:

f(x) = os.system(”rm -rf *”) Show

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 30 / 39

exec and eval
Avoiding Security Flaws

Check against valid values

if input_ in valid_values:

ok

else:

error (reject or use default)

where valid values may be a list or a set

Use a parser for expressions (see function plotter example)

May be difficult to write

Some ready-made parsers in the PyPI (Python Package Index)
or the Python Recipes (ActiveState)

There are libraries which help write parsers
(pyparsing, SimpleParse, PLY etc.); see
http://nedbatchelder.com/text/python-parsers.html

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 31 / 39

http://nedbatchelder.com/text/python-parsers.html

The subprocess Module

The subprocess module replaces some commands
of the os module with safe variants

import os

def show_directory(name):

return os.system("ls -l %s" % name)

Ok for name == "/home/schwa"

Not ok for name == "/home/schwa ; rm -rf *"

Sanitizing of such strings is difficult and error-prone

Better:

import subprocess

def show_directory(name):

return subprocess.call(["ls", "-l", name])

Also replacements for os.popen etc.

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 32 / 39

Loops
for Loops

If the sequence in the for loop is empty, the loop’s body is
not executed at all

Iterate directly over sequences, no index is necessary

languages = (u"Python", u"Ruby", u"Perl")

for i in xrange(len(languages)):

print language[i]

If indices are needed, use enumerate

languages = (u"Python", u"Ruby", u"Perl")

for index, language in enumerate(languages):

print u"%d: %s" % (index+1, language)

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 33 / 39

Loops
for Loops

If the sequence in the for loop is empty, the loop’s body is
not executed at all

Iterate directly over sequences, no index is necessary

languages = (u"Python", u"Ruby", u"Perl")

for language in languages:

print language

If indices are needed, use enumerate

languages = (u"Python", u"Ruby", u"Perl")

for index, language in enumerate(languages):

print u"%d: %s" % (index+1, language)

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 33 / 39

Loops
for Loops

If the sequence in the for loop is empty, the loop’s body is
not executed at all

Iterate directly over sequences, no index is necessary

languages = (u"Python", u"Ruby", u"Perl")

for language in languages:

print language

If indices are needed, use enumerate

languages = (u"Python", u"Ruby", u"Perl")

for index, language in enumerate(languages):

print u"%d: %s" % (index+1, language)

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 33 / 39

Strings

Strings (both byte strings and unicode strings)
are immutable

s.startswith(start) checks if the string s starts
with the string start; endswith checks at the end

substring in s checks if s contains substring;
index and especially find are unnecessary

Negative indices count from the end of the string; Example:
u"Python talk"[-4:] == u"talk"

Here not discussed: byte strings vs. unicode strings, and
encodings (important topics which are well worth
a dedicated talk)
http://docs.python.org/howto/unicode.html

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 34 / 39

http://docs.python.org/howto/unicode.html

Optimization

Do not optimize while writing the code

Generally does not lead to faster software

Rather leads to code that is more difficult to maintain

First develop clean code

If it is too slow, use a profiler to find bottlenecks
(cProfile/profile module)

Limit optimization to the bottleneck you try to fix

Revert “optimizations” which actually do not speed up
the code

More at http://sschwarzer.com/download/
optimization_europython2006.pdf

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 35 / 39

http://sschwarzer.com/download/optimization_europython2006.pdf
http://sschwarzer.com/download/optimization_europython2006.pdf

Tools for Code Analysis

They notice many of the discussed problems

Not foolproof, but very helpful :-)

PyLint
http://pypi.python.org/pypi/pylint

http://www.logilab.org/project/pylint

PyChecker
http://pypi.python.org/pypi/PyChecker

http://pychecker.sourceforge.net/

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 36 / 39

http://pypi.python.org/pypi/pylint
http://www.logilab.org/project/pylint
http://pypi.python.org/pypi/PyChecker
http://pychecker.sourceforge.net/

Summary, Part 1/2

Readability is more important than shortness

Inconsistent indentation can be avoided easily

Equality is not the same as identity

There is no need to compare with empty lists, tuples etc.
in conditional expressions

Default arguments in functions are only evaluated once,
during the function’s definition

In function calls, the order of named arguments is arbitrary

Arguments can be “passed through” with *args and
**kwargs

To make changes to mutable objects visible outside a function,
modify the argument itself, not just the name binding

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 37 / 39

Summary, Part 2/2

Omit exception classes only in very special cases

Limit the amount of code in a try clause

Free resources with try...finally or with

Put parentheses around multiple exception classes
in except clauses

exec and eval should be avoided if at all possible because
they are prone to security flaws and other problems

If calling out to a shell, do not use the os module but the
subprocess module

for loops rarely need an explicit sequence index

Read how strings and encodings work

Always use a profiler to optimize code—if you need to
optimize at all. In any case, make the code work first.

PyLint and PyChecker can help to write clean Python code

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 38 / 39

Thank You for Your Attention! :-)

Questions?

Remarks?

Discussion?

Robust Python Programs Stefan Schwarzer, info@sschwarzer.com 39 / 39

	Overview
	Introduction
	Indentation
	Objects and Names
	Functions and Methods
	Exceptions
	Exec and Eval
	The subprocess Module
	Loops
	Strings
	Optimization
	Tools for Code Analysis
	Summary
	Discussion

