
Unit testing with mock code
EuroPython 2004

Stefan Schwarzer

sschwarzer@sschwarzer.net

Informationsdienst Wissenschaft e. V.

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.1/25

Personal background

I’m leading the software development at the
Informationsdienst Wissenschaft e. V. (idw, Science
Information Service), http://idw-online.de

The idw distributes press releases of scientific
institutions to the public, but especially to journalists

The idw software is currently rewritten (approx. 50 000
lines of Python code, 10 000 for unit tests)

I wrote a book, “Workshop Python” (Addison-Wesley)

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.2/25

Overview

A glance at the unittest.TestCase class

Definitions

Typical mock object usage

Example 1: A logging mock object

Example 2: Testing a Logfile class with mock code

Some tips for mock code usage

Testing at the right call level

When to use mock code

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.3/25

Testing with unittest.TestCase

import unittest

class MyTestCase(unittest.TestCase):
def test1(self, ...):

"Run test 1"
...

def test2(self, ...):
"Run test 2"
...

if __name__ == ’__main__’:
unittest.main()

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.4/25

Some common TestCase methods

Does the code to test behave as expected?

assertEqual(arg1, arg2)

assertRaises(exception_type, callable_,
*args, **kwargs)

failIf(condition)

failUnless(condition)

How do we isolate the test methods from each other?

setUp()

tearDown()

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.5/25

Definitions

Code under test is the part of the production code we
want to test by writing some test code

Mock code is substitute code for production code which
is used by the code under test

A mock object is mock code in form of an object

A difficult test is a unit test that suggests using mock
code (see next page)

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.6/25

Difficult tests

We want to test if our code behaves correctly, but ...

we can’t reproduce something because it’s not under
our control

the setup of the test fixture would be possible but
difficult, slow or error-prone

Examples:

A file system becomes full while writing a file

An internet connection is lost during a data transfer

A mail server can’t be reached

Use mock code for difficult tests

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.7/25

Difficult tests

We want to test if our code behaves correctly, but ...

we can’t reproduce something because it’s not under
our control

the setup of the test fixture would be possible but
difficult, slow or error-prone

Examples:

A file system becomes full while writing a file

An internet connection is lost during a data transfer

A mail server can’t be reached

Use mock code for difficult tests

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.7/25

Difficult tests

We want to test if our code behaves correctly, but ...

we can’t reproduce something because it’s not under
our control

the setup of the test fixture would be possible but
difficult, slow or error-prone

Examples:

A file system becomes full while writing a file

An internet connection is lost during a data transfer

A mail server can’t be reached

Use mock code for difficult tests

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.7/25

Typical mock object usage

The test code ...

1. prepares the mock object to show a certain behavior
when it is used

2. calls the code under test, passing in the mock object as
an argument

3. checks the mock object for signs of its usage by the
code under test

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.8/25

Typical mock object usage

The test code ...

1. prepares the mock object to show a certain behavior
when it is used

2. calls the code under test, passing in the mock object as
an argument

3. checks the mock object for signs of its usage by the
code under test

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.8/25

Typical mock object usage

The test code ...

1. prepares the mock object to show a certain behavior
when it is used

2. calls the code under test, passing in the mock object as
an argument

3. checks the mock object for signs of its usage by the
code under test

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.8/25

A logging mock object (1)

class Logger:
def __init__(self):

don’t trigger __setattr__
self.__dict__[’history’] = []

def __setattr__(self, attrname, value):
self.history.append(

"Set attribute %s to %r" %
(attrname, value))

def __getattr__(self, attrname):
self.history.append(

"Read attribute %s" % attrname)

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.9/25

A logging mock object (2)

def test_code(an_object):
an_object.x = 9
y = an_object.x

logger = Logger()
test_code(logger)
for event in logger.history: print event

Output:
Set attribute x to 9
Read attribute x

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.10/25

A Logfile class

The class wraps a file-like object; the constructor gets it
as the argument:

logfile = Logfile(wrapped_file)

On writing, the write method adds the current
timestamp in front of the string to write. With

wrapped_file = file("myapp.log", "w")
logfile = Logfile(wrapped_file)
logfile.write("Test")

we may get in the wrapped file
2004-06-07 09:32:25 Test

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.11/25

A Logfile class implementation

class Logfile:
def __init__(self, wrapped_file):

self.wrapped = wrapped_file

def write(self, message):
self.wrapped.write("%s %s\n" %

(self.timestamp(), message))

def timestamp(self):
return time.strftime(

"%Y-%m-%d %H:%M:%S")

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.12/25

Testing Logfile’s write method

Python’s StringIO objects are “natural” mock objects

They make it easy to test code that uses arbitrary
file-like objects

No filesystem needed; no cleanup after writing the “file”;
written data is easily accessible

Test code for Logfile.write:
wrapped = StringIO.StringIO()
logfile = Logfile(wrapped)
logfile.write("Test message")
contents = wrapped.getvalue()
check format of contents (a bit tedious)
...

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.13/25

Testing Logfile’s write method

Python’s StringIO objects are “natural” mock objects

They make it easy to test code that uses arbitrary
file-like objects

No filesystem needed; no cleanup after writing the “file”;
written data is easily accessible

Test code for Logfile.write:
wrapped = StringIO.StringIO()
logfile = Logfile(wrapped)
logfile.write("Test message")
contents = wrapped.getvalue()
check format of contents (a bit tedious)
...

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.13/25

Simplify the format check (1)

Modify the original Logfile class:
class Logfile:

...

def timestamp(self):
return time.strftime(

"%Y-%m-%d %H:%M:%S",
self._time_tuple())

def _time_tuple(self):
return time.localtime()

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.14/25

Simplify the format check (2)

Derive from the Logfile class; inject mock code
class MyLogfile(Logfile):

def _time_tuple(self):
return (2004, 6, 7, 10, 20, 30,

0, 0, -1)

Use the modified class in the test
wrapped = StringIO.StringIO()
logfile = MyLogfile(wrapped)
logfile.write("Test message")
self.assertEqual(wrapped.getvalue(),
"2004-06-07 10:20:30 Test message\n")

Mask only “trivial” code under test with mock code

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.15/25

Simplify the format check (2)

Derive from the Logfile class; inject mock code
class MyLogfile(Logfile):

def _time_tuple(self):
return (2004, 6, 7, 10, 20, 30,

0, 0, -1)

Use the modified class in the test
wrapped = StringIO.StringIO()
logfile = MyLogfile(wrapped)
logfile.write("Test message")
self.assertEqual(wrapped.getvalue(),
"2004-06-07 10:20:30 Test message\n")

Mask only “trivial” code under test with mock code

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.15/25

Simplify the format check (2)

Derive from the Logfile class; inject mock code
class MyLogfile(Logfile):

def _time_tuple(self):
return (2004, 6, 7, 10, 20, 30,

0, 0, -1)

Use the modified class in the test
wrapped = StringIO.StringIO()
logfile = MyLogfile(wrapped)
logfile.write("Test message")
self.assertEqual(wrapped.getvalue(),
"2004-06-07 10:20:30 Test message\n")

Mask only “trivial” code under test with mock code

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.15/25

Testing exception handling (1)

Assume a Logfile object should raise a LogError if
the write method of the underlying file-like object fails
with an IOError

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.16/25

Testing exception handling (2)

Possible implementation

class LogError(Exception):
pass

class Logfile:
...

def write(self, message):
try:

self.wrapped.write("%s %s\n" %
(self.timestamp(), message))

except IOError:
raise LogError("IO error")

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.17/25

Testing exception handling (3)

This implementation is easy to check with a mock object
class FailingFile:

def write(self, message):
raise IOError("failing mock object")

Test code:
wrapped_file = FailingFile()
logfile = Logfile(wrapped_file)
self.assertRaises(LogError, logfile.write,

"Test")

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.18/25

Testing exception handling (3)

This implementation is easy to check with a mock object
class FailingFile:

def write(self, message):
raise IOError("failing mock object")

Test code:
wrapped_file = FailingFile()
logfile = Logfile(wrapped_file)
self.assertRaises(LogError, logfile.write,

"Test")

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.18/25

Tips for using mock code

Typical mock objects are connection objects of all kinds
(database, HTTP, SMTP, ...), files and file-like objects

Inject mock code ...
as mock objects passed into production code
functions or methods
via an overwritten method in the production code
class (this method may be a factory which returns a
production code or a mock object)

Keep your mock code simple. Avoid coding “universal”
mock objects; they can become rather complicated and
difficult to maintain

Test your code under test, not its implementation

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.19/25

Tips for using mock code

Typical mock objects are connection objects of all kinds
(database, HTTP, SMTP, ...), files and file-like objects

Inject mock code ...
as mock objects passed into production code
functions or methods
via an overwritten method in the production code
class (this method may be a factory which returns a
production code or a mock object)

Keep your mock code simple. Avoid coding “universal”
mock objects; they can become rather complicated and
difficult to maintain

Test your code under test, not its implementation

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.19/25

Tips for using mock code

Typical mock objects are connection objects of all kinds
(database, HTTP, SMTP, ...), files and file-like objects

Inject mock code ...
as mock objects passed into production code
functions or methods
via an overwritten method in the production code
class (this method may be a factory which returns a
production code or a mock object)

Keep your mock code simple. Avoid coding “universal”
mock objects; they can become rather complicated and
difficult to maintain

Test your code under test, not its implementation

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.19/25

Tips for using mock code

Typical mock objects are connection objects of all kinds
(database, HTTP, SMTP, ...), files and file-like objects

Inject mock code ...
as mock objects passed into production code
functions or methods
via an overwritten method in the production code
class (this method may be a factory which returns a
production code or a mock object)

Keep your mock code simple. Avoid coding “universal”
mock objects; they can become rather complicated and
difficult to maintain

Test your code under test, not its implementation

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.19/25

Testing at the right call level (1)

Be careful when a mock object collects data at call levels
which aren’t directly executed by the code under test. In
this case, your test code may become dependent on the
implementation of the code under test, not only its interface.

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.20/25

Testing at the right call level (2)

Example: Recursive save operations into an SQL database
class X:

def save(self):
self.save_x_data()
for y in self.ys: y.save()

class Y:
def save(self):

self.save_y_data()
for z in self.zs: z.save()

class Z:
def save(self):

self.save_z_data()

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.21/25

Testing at the right call level (3)

We want to test X’s save method

We use a mock database connection object which
stores the corresponding SQL commands

When examing the mock object after saving X, we find
not only the commands to store the contained Y
objects, but also commands for the Z objects:

INSERT INTO x ...
INSERT INTO y ...
INSERT INTO z ...
INSERT INTO z ...
INSERT INTO y ...
INSERT INTO z ...

Thus, Y’s implementation affects the test of X.save

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.22/25

When to use mock code

How error-prone is the production code to test, or do we
need the test to specify the interface? Do we need the
test at all?

How difficult would a conventional test be (including any
setup and cleanup for all tests and/or each test)?

Can we pass in a mock object and how complex does
that mock object have to be?

If we redesign the production code to use mock code,
how difficult are the changes and how do they affect the
maintainability of the changed production code?

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.23/25

When to use mock code

How error-prone is the production code to test, or do we
need the test to specify the interface? Do we need the
test at all?

How difficult would a conventional test be (including any
setup and cleanup for all tests and/or each test)?

Can we pass in a mock object and how complex does
that mock object have to be?

If we redesign the production code to use mock code,
how difficult are the changes and how do they affect the
maintainability of the changed production code?

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.23/25

When to use mock code

How error-prone is the production code to test, or do we
need the test to specify the interface? Do we need the
test at all?

How difficult would a conventional test be (including any
setup and cleanup for all tests and/or each test)?

Can we pass in a mock object and how complex does
that mock object have to be?

If we redesign the production code to use mock code,
how difficult are the changes and how do they affect the
maintainability of the changed production code?

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.23/25

When to use mock code

How error-prone is the production code to test, or do we
need the test to specify the interface? Do we need the
test at all?

How difficult would a conventional test be (including any
setup and cleanup for all tests and/or each test)?

Can we pass in a mock object and how complex does
that mock object have to be?

If we redesign the production code to use mock code,
how difficult are the changes and how do they affect the
maintainability of the changed production code?

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.23/25

Questions?

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.24/25

References

Unit Test,
http://www.c2.com/cgi/wiki?UnitTest

Mock Object,
http://www.c2.com/cgi/wiki?MockObject

Endo-Testing: Unit Testing with Mock Objects,
http://www.connextra.com/aboutUs/
mockobjects.pdf

Pers Overview TestCase Defs DiffTests MOUsage LoggingObj Logfile Tips Level WhenUse Unit testing with mock code – EuroPython 2004 – Stefan Schwarzer – p.25/25

	Personal background
	Overview
	Testing with unittest.TestCase
	Some common TestCase methods
	Definitions
	Difficult tests
	Difficult tests
	Difficult tests
	Typical mock object usage
	Typical mock object usage
	Typical mock object usage
	A logging mock object (1)
	A logging mock object (2)
	A Logfile class
	A Logfile class implementation
	Testing Logfile's write method
	Testing Logfile's write method
	Simplify the format check (1)
	Simplify the format check (2)
	Simplify the format check (2)
	Simplify the format check (2)
	Testing exception handling (1)
	Testing exception handling (2)
	Testing exception handling (3)
	Testing exception handling (3)
	Tips for using mock code
	Tips for using mock code
	Tips for using mock code
	Tips for using mock code
	Testing at the right call level (1)
	Testing at the right call level (2)
	Testing at the right call level (3)
	When to use mock code
	When to use mock code
	When to use mock code
	When to use mock code
	Questions?
	References

