
Support
Python 2 and Python 3

with the same code

EuroPython 2014

Stefan Schwarzer, SSchwarzer.com
info@sschwarzer.com

Berlin, Germany, 2014-07-24



Introduction

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 2 / 30



About me

Degree in chemical engineering

Software developer since 2000

Freelancer since 2005

Maintainer of ftputil, an FTP client library for Python

Last year release of ftputil 3.0, with support for Python 3.x in
addition to Python 2.6 and 2.7. Same source code, same API.

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 3 / 30



Python 2 or Python 3?

Should I use Python 2 or Python 3 for my development
activity?

. . .

Python 2.x is legacy, Python 3.x is the present and future
of the language.

https://wiki.python.org/moin/Python2orPython3

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 4 / 30



So Python 2 is obsolete?

Yes. And no. ;-)

Python 2 still more widely used

Python 2 pre-installed on many Linux distributions,
Python 3 is optional.

More hosting for Python 2

Many libraries don’t have a Python 3 version yet.
(But many do.)

That said, use Python 3 if you can :-)

Ease transition for others by providing Python 3 support in
your libraries

,

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 5 / 30



Different approaches

Develop in Python 2, make Python 3 version with 2to3

Develop in Python 3, make Python 2 version with 3to2 (rare)

Develop in Python 2 and Python 3

Same source code
No conversion step during installation
. . . and development

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 6 / 30



Bytes vs. unicode

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 7 / 30



Bytes vs. unicode

Bytes (= byte strings) represent bytes as stored on disk or
sent over a socket

Unicode (= unicode text, unicode strings) represents character
data. Characters have number codes (”code points”) that are
unrelated to how the characters are stored

Unicode text can be encoded to bytes according to an
encoding (e. g. UTF-8 or Latin1)

Conversely, bytes can be decoded to unicode text

68 h 68
f6 ö encode c3

−→ b6
72 r ←− 72
65 e decode 65
6e n 6e

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 8 / 30



Python string types

Python Binary type Unicode type Default string literal
type, as in "string"

2 str unicode str (= binary type)
3 bytes str str (= unicode type)

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 9 / 30



Python 3: Unicode and byte strings can’t be mixed

Valid code in Python 2:
s = "a sequence of bytes" + u" and unicode text"

Unless the bytes sequence contains anything non-ASCII:
UnicodeDecodeError – dependent on processed data

In Python 3, mixing bytes and unicode like this isn’t allowed:
TypeError – independent of processed data

In Python 3, decode bytes or encode the unicode text to
combine the strings:
s = b"bytes".decode("utf8") + " and unicode"

However, don’t do this ”in-place” like here

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 10 / 30



Python 3: Most APIs use unicode instead of byte strings

>>> import decimal

>>> decimal.Decimal("1.0") # Python 3 unicode string

Decimal(’1.0’)

>>> decimal.Decimal(b"1.0")

Traceback (most recent call last):

File "<stdin>", line 1, in <module>

TypeError: conversion from bytes to Decimal is not supported

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 11 / 30



Python 3: New file API

open() creates files for text or binary data (t and b, as usual)

Text files accept only unicode for writing and return unicode
on reading

Binary files accept only bytes for writing and return bytes
on reading

No more file objects. Return value of open depends on the
arguments (unicode vs. bytes, buffered vs. unbuffered).

New open function also available as io.open in Python 2.6,
2.7 and 3.x

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 12 / 30



Python 3: Operating system interfaces use unicode

Command line arguments: sys.argv contains unicode strings

Standard input: sys.stdin.read() returns unicode string

Standard output: sys.stdout.write(string) requires
unicode argument

sys.stdin.buffer and sys.stdout.buffer to read or
write binary data

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 13 / 30



Adapting for Python 3
Steps

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 14 / 30



Have/write automated unit tests

If you don’t have them, this is a good time to write them

Must pass 100 % under Python 2 (and later Python 3)

Adapt/add/delete tests during changes for Python 3 support

Lots of tests will fail if run under Python 3 for the first time.
That’s normal. Don’t despair! :-)

Running tests with python -3 prints information on things
that likely need to change for Python 3 support

Frequently make sure production code and tests are in sync

Run tests under both Python 2 and 3 with tox

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 15 / 30



Run 2to3 once

Makes some simple, but helpful changes

print is now a function
print("Answer:", 42, file=results file)

Exceptions
except SomeError as error:

. . . and other changes

Look up 2to3 documentation on ”fixers“

Exclude future fixer

Some fixer changes shouldn’t be kept as-is. Replace them
with code that will work with Python 2 and 3.

Inspect results thoroughly and fix any problems.
After this all unit tests should pass (again) under Python 2.

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 16 / 30



Change APIs to support Python 2 and 3
Unicode or bytes for text?

Standard library of Python 2 accepts both unicode and bytes

Standard library of Python 3 accepts almost only unicode
(exception: file system paths)

Therefore use unicode for text data

Know/define what data is text data (e. g. are URLs binary
or text?)

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 17 / 30



Change APIs to support Python 2 and 3
Encode/decode text at system boundaries

Decode bytes to text as soon as possible (e. g. io.open

with encoding argument to read text data from a file)
Encode text data to bytes as late as possible (e. g. before
sending text data over a socket)
Hence all text ”inside” the system is unicode

Library
Unicode here!de

co
de

en
co

de

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 18 / 30



Change APIs to support Python 2 and 3
If the API changes aren’t straighforward

Visualize your system. Pay attention to components and
interactions.

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 19 / 30



Change APIs to support Python 2 and 3
If the API changes aren’t straighforward

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 20 / 30



Change APIs to support Python 2 and 3
If the API changes aren’t straighforward

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 21 / 30



Change APIs to support Python 2 and 3
Some tips

Don’t let functions/methods accept both unicode and byte
strings → makes API confusing and complicates tests

Special case: prefer file-like objects over strings for paths

Avoid different APIs for Python 2 and 3 → complicates
other code that should work under Python 2 and 3

Make a list of changes before actually changing the API

Notice more easily if something is missing before coding
Makes it more difficult to forget some changes during coding
Helps write release notes and possibly ”What’s new?“
document

Increasing major version number justifies necessary
backward-incompatible API changes :-)

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 22 / 30



Adapting for Python 3
Tips

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 23 / 30



Read ”What’s new in Python 3.0 ?“

At least.

Highly recommended: ”Porting to Python 3”

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 24 / 30



If possible, support only Python 2.6 and up

Python 2.6 and 2.7 have very useful Python 3 features
backported, e. g. the print function, a new exception syntax
and the io module

Use six library to support Python 2.5

Anything below 2.6 will probably be awkward

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 25 / 30



More tips

compat module for things that need to differ between
Python 2 and 3

if sys.version_info[0] == 2:

...

else:

...

Consider future or six library for larger projects

Add to every Python file

from __future__ import (absolute_imports,

division, print_function, unicode_literals)

Alternative to unicode literals in Python 3.3+ :
u prefix for unicode strings

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 26 / 30



Summary

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 27 / 30



Summary

Python 2 is in wider use, but Python 3 is the future

Using the same source code to support Python 2 and 3
is feasible

Know the concepts of unicode, bytes and encodings and the
related changes from Python 2 to Python 3

Without unit tests, adapting for Python 3 will usually be
much more difficult

Prefer text APIs in ”Python 3 style“

Plan and implement necessary API changes carefully

Read ”What’s new in Python 3.0 ?“ for more differences

Python 2.6 and 2.7 have many features backported from
Python 3, so require at least Python 2.6 if possible

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 28 / 30



Thanks for your attention! :-)

Questions?

Remarks?

Discussion?

sschwarzer@sschwarzer.com

http://sschwarzer.com

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 29 / 30



Links

Unicode article by Joel Spolsky
http://www.joelonsoftware.com/articles/Unicode.html

Python 3 resources
http://getpython3.com

Porting to Python 3 (free online book)
http://python3porting.com

Modernize

https://github.com/mitsuhiko/python-modernize

future and six libraries
http://python-future.org

https://pypi.python.org/pypi/six

tox

http://tox.readthedocs.org

Support Python 2 and 3 with the same code Stefan Schwarzer, info@sschwarzer.com 30 / 30


