Concurrency in Python

Concepts, frameworks and best practices

PyCon DE

Stefan Schwarzer, SSchwarzer.com
info@sschwarzer.com

Karlsruhe, Germany, 2018-10-26

https://sschwarzer.com/en/

About me

Using Python since 1999
Software developer since 2000
Freelancer since 2005

Book “Workshop Python", Addison-Wesley,
using the then brand new Python 2.2 ;-)

About 15 conference talks

m Maintainer of ftputil (high-level FTP client library)
since 2002

Concurrency in Python 2 /47

Overview

m Basics
m Concurrency approaches

m Race conditions

m Deadlocks

m Queues

m Higher-level concurrency approaches
n

Best practices

Concurrency in Python 3/47

Basics

reasons, terms

Reasons for concurrency

m CPU intensive tasks
Speed up algorithms by executing parts in parallel.
m Input/output
Other parts of the program can run while waiting for 1/0.
m Reactivity
While a GUI application executes some lengthy operation,
the application should still accept user interaction.

Concurrency in Python 5 /47

Terms

m Resource
Anything that’s used by an execution thread (not necessarily
an OS thread), for example simple variables, data structures,
files or network sockets.

m Concurrency
There are multiple execution threads. They don't have to
progress at the same time.

m Parallelism
Execution threads run at the very same time (for example
on different CPU cores).

m Atomic operation
A task that can't be interrupted by another execution thread

Concurrency in Python 6 /47

Concurrency approaches

multithreading, multiprocessing, event loop

Concurrency approaches
Multithreading

m Concurrency of OS threads in a single process
m Module threading in the standard library

m Threads can share data in process memory

m For CPython the global interpreter lock (GIL) applies
[

The GIL is released during 1/O operations.
Also, C extensions can release the GIL.

Concurrency in Python

The GIL prevents the parallel execution of Python code.

8/47

Concurrency approaches

Multiprocessing

m Concurrency of OS processes
® Module multiprocessing in the standard library

m Data transfer between processes via messages
or shared memory

m When transferring messages, they must be serialized.
This is additional work.

m Advantage of multiprocessing: no limitation of parallel
execution, not even for CPU-limited work. The GIL
is per Python process.

Concurrency in Python 9 /47

Concurrency approaches
Event loop

m Loop (“main loop™”) detects events (examples: mouse click,
incoming network data)
m Variants:

m Depending on the event, a “handler” is called and processes
the event. Control returns to the main loop after the handler
execution.

m Code looks sequential, but execution is switched to other code
if the event loop has to wait for /0.

m Both variants may be used in the same program.

m An event loop implementation is in the package asyncio
in the standard library.

Concurrency in Python 10 /47

Race conditions

definition, code example, explanation, fix

Race conditions

Definition

While a resource is modified by an execution thread,
another execution thread modifies or reads the resource.

Concurrency in Python 12 /47

Race conditions

Code without protection against concurrent access
import threading, time # ‘sys.setswitchinterval® omitted

counter = 0
def count():
global counter
for _ in range(100):
counter += 1

threads = []
for _ in range(100):
thread = threading.Thread(target=count)
thread.start() # Start thread. Don’t confuse with ‘run‘.
threads.append (thread)
for thread in threads:
thread. join() # Wait until thread is finished.
print ("Total:", counter)

Concurrency in Python 13 /47

Race conditions

Output without protection against concurrent access

$ python3 race_condition.py

Total: 9857
$ python3 race_condition.py
Total: 9917
$ python3 race_condition.py
Total: 9853
$ python3 race_condition.py
Total: 9785
$ python3 race_condition.py
Total: 9972

$ python3 race_condition.py
Total: 9731

Concurrency in Python 14 /47

Race conditions

Explanation — race condition because of concurrent access

This is only one of many possibilities.

Time Thread 1 Thread 2
Read counter: 0
Read counter: 0
Add1:1

Add 1:1
Store: 1

Store: 1

Thread 2 reads the earlier value of counter because thread 1
hasn't stored the new value yet.

Concurrency in Python 15 /47

Race conditions
Code with protection against concurrent access

import threading, time # ‘sys.setswitchinterval‘ omitted

counter = 0
lock = threading.Lock()

def count_with_lock():
global counter
for _ in range(100):

with lock:
counter += 1 # Atomic operation

threads = []

for _ in range(100):
thread = threading.Thread(target=count_with_lock)
thread.start ()
threads.append (thread)

Concurrency in Python 16 /47

Deadlocks

definition, code example

Deadlocks

Definition

A deadlock happens if execution threads mutually
claim resources that the other execution threads need.

Example:
m Both thread 1 and 2 need resources A and B to finish a task.
m Thread 1 already holds resource A and wants resource B.
m Thread 2 already holds resource B and wants resource A.

— Deadlock!

Concurrency in Python 18 /47

Deadlocks

Example code

Thread 1
with input_lock: # 1st
with output_lock: # blocks
input_line = input_fobj.readline()
Process input
output_fobj.write(output_line)

Thread 2
with output_lock: # 2nd
with input_lock: # blocks
input_line = input_fobj.readline()
Process input
output_fobj.write(output_line)

Concurrency in Python 19 /47

Queues

code example with worker threads

Queues

Schema for the following example

queue.get()

queue.put(job) ____—> Worker1l
> | | ————> Worker 2
Worker n

Principle: put and get are atomic operations.

Concurrency in Python 21 /47

Queues
Setup

import logging, queue, random, threading, time

logging.basicConfig(level=logging.INFO, format="%(message)s")
logger = logging.getLogger ("queue_example")

WORKER_COUNT = 10

JOB_COUNT = 100

Needed to shut down threads without race conditioms.
STOP_TOKEN = object()

job_queue = queue.Queue()

class Job:

def __init__(self, number):
self.number = number

Concurrency in Python 22 /47

Queues
Worker thread

class Worker(threading.Thread):

def run(self):
while True:
job = job_queue.get(block=True)
if job is STOP_TOKEN:
break
self._process_job(job)

def _process_job(self, job):
Wait between O and 0.01 seconds.
time.sleep(random.random() / 100.0)
Atomic output
logger.info("Job number {:d}".format(job.number))

Concurrency in Python 23 /47

Queues

Creation and execution of jobs

def main():

workers = []

Create and start workers.

for _ in range (WORKER_COUNT) :
worker = Worker ()
worker.start ()
workers.append (worker)

Schedule jobs for workers.

for i in range(JOB_COUNT):
job_queue.put (Job(i))

Schedule stopping of workers.

for _ in range (WORKER_COUNT) :
job_queue.put (STOP_TOKEN)

Wait for workers to finish.

for worker in workers:
worker. join()

Concurrency in Python 24 /47

Higher-level concurrency approaches

concurrent.futures, active objects, process networks

concurrent.futures

Example

import concurrent.futures
import logging

import random

import time

WORKER_COUNT = 10
JOB_COUNT = 100

class Job:

def __init__(self, number):
self.number = number

Concurrency in Python 26 /47

concurrent.futures

Example

def process_job(job):
Wait between O and 0.01 seconds.
time.sleep(random.random() / 100.0)
Atomic output
logger.info("Job number {:d}".format(job.number))

def main():
with concurrent.futures.ThreadPoolExecutor(

max_workers=WORKER_COUNT) as executor:

Distribute jobs.

futures = [executor.submit(process_job, Job(i))

for i in range(JOB_COUNT)]

Wait for work to finish.

for future in concurrent.futures.as_completed(futures):
pass

Concurrency in Python 27 /47

concurrent.futures

Comparison with queue example

m process_job is now a function, no need to inherit from
threading.Thread and implement run

m No queue needed

m No error-prone token handling needed to stop the workers
at the right time

— Use concurrent. futures if you can! :-)

Concurrency in Python 28 /47

Active objects

m Principle: Locks, queues or other synchronization mechanisms
are not part of the API of an object.

m Synchronization, as far as needed, is hidden in high-level
methods.

Concurrency in Python 29 /47

Active objects
Example — constructor

import queue
import threading

STOP_TOKEN = object()

class Adder:

def __init__(self):
self._in_queue = queue.Queue()
self._out_queue = queue.Queue()
self._worker_thread = threading.Thread(
target=self._work)
self._worker_thread.start()

Concurrency in Python 30 /47

Active objects

Example — internal method

def _work(self):
while True:
work_item = self._in_queue.get(block=True)
if work_item is STOP_TOKEN:
break
result = work_item + 1000
self._out_queue.put (result)

Concurrency in Python 31 /47

Active objects

Example — public methods

def submit(self, work_item):
self._in_queue.put (work_item)

def next_result(self):
return self._out_queue.get(block=True)

def stop(self):

self._in_queue.put (STOP_TOKEN)
self._worker_thread.join()

Concurrency in Python 32 /47

Active objects

Example — usage

def main():

ITEM_COUNT = 100

adder = Adder()

for i in range(ITEM_COUNT) :
Doesn’t block
adder.submit (i)

Do other things.

...

Collect results.

for _ in range(ITEM_COUNT) :
May block
print (adder.next_result())

May block

adder.stop()

Concurrency in Python 33 /47

Process networks

Processes receive input data and/or send output data.

Data transfer between processes by message passing

m Processes can use different programming languages
if they use a message format that the communicating
processes understand.

m Some overhead due to data serialization and protocols

Concurrency in Python 34 /47

Process networks
With broker

m Processes communicate with a broker service, but not
with each other.

Broker

/AN

| Process | | Process | | Process | | Process |

m Broker protocol examples: AMQP, MQTT
m Declarative configuration

m Message persistence (optional)

Concurrency in Python 35 /47

Process networks
Without broker

m Processes communicate directly.

Process

\ Process

| Process |—>| Process |

m Example: ZeroMQ

Concurrency in Python 36 /47

Best practices

caveats, general design advice, approaches, shared state

Best practices

Caveats

m The following “best practices” aren’t necessarily written down
in books or online, but are my recommendations.

m Different advice may apply to different areas of your code.

Concurrency in Python 38/47

Best practices

General design advice

m Concurrency is an optimization.
Like other optimizations, use it only if necessary.

m Try to keep code simple and easy to understand.
In many cases this would mean queues or higher-level APls
to communicate between threads or processes.

m If you use low-level APlIs, hide them. Don't make locks,
queues etc. a part of the public interface.

Concurrency in Python 39/47

Best practices

Choose a concurrency approach

m |/O-limited concurrency
multithreading
asyncio (for many concurrent tasks)
process networks

m CPU-limited concurrency
multiprocessing
multithreading (if using extensions that can release the GIL)
process networks

m GUI frameworks
usually come with their own event loop

m Concurrent processes in different languages
process networks

Concurrency in Python 40 /47

Best practices
Shared state

m Be extremely careful not to read shared state while it may
be written. Even query methods may be problematic if they
implicitly update an internal cache of an object, for example.

m Make sure the APIs you use from multiple threads are
thread-safe. You can only count on the documentation
because the code may be different in the next version.

m Try to avoid shared state. Pass immutable objects or set up
the state before starting threads that access the state.

m Concurrency involving shared state is difficult to test.
Don't assume your code doesn't have concurrency issues only
because it seems to run fine. Invest some time to create
a solid design. Have your code reviewed.

Concurrency in Python 41 /47

Thank you for your attention! :-)

Questions?
Remarks?

Discussion?

info@sschwarzer.com

https://sschwarzer.com

Concurrency in Python 42 /47

https://sschwarzer.com/en/

Appendices

links, asyncio example

Links

m Dr. Dobb's Parallel Computing
http://www.drdobbs.com/parallel (overview page)
http://www.drdobbs.com /212903586 (introduction)

m “The problem with threads”
https://www?2.eecs.berkeley.edu/Pubs/TechRpts/2006 /EECS-
2006-1.pdf

m Design recommendations
https://stackoverflow.com/questions/1190206/, especially
https:/ /stackoverflow.com/questions/1190206/threading-in-
python/1192114#1192114

m Active object pattern
http://www.drdobbs.com /225700095

m “Notes on structured concurrency”
https:/ /vorpus.org/blog/notes-on-structured-concurrency-or-
go-statement-considered-harmful

Concurrency in Python 44 / 47

http://www.drdobbs.com/parallel
http://www.drdobbs.com/212903586
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://stackoverflow.com/questions/1190206/
https://stackoverflow.com/questions/1190206/threading-in-python/1192114#1192114
https://stackoverflow.com/questions/1190206/threading-in-python/1192114#1192114
http://www.drdobbs.com/225700095
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful

asyncio
Example — Setup
import asyncio

import logging
import random

logging.basicConfig(level=logging.INFO, format="7%(message)s")
logger = logging.getLogger ("asyncio_example")

JOB_COUNT = 100

class Job:

def __init__(self, number):
self.number = number

Concurrency in Python 45 / 47

asyncio
Example — asynchronous code

async def process_job(job):
Wait between O and 0.01 seconds.
await asyncio.sleep(random.random() / 100.0)
logger.info("Job number {:d}".format(job.number))

def main(Q):

loop = asyncio.get_event_loop()

tasks = []

for i in range(JOB_COUNT):
task = loop.create_task(process_job(Job(i)))
tasks.append (task)

for task in tasks:
Similar to ‘Thread.start‘ plus ‘Thread.join‘
loop.run_until_complete(task)

loop.close()

Concurrency in Python 46 / 47

