
Concurrency in Python
Concepts, frameworks and best practices

PyCon DE

Stefan Schwarzer, SSchwarzer.com
info@sschwarzer.com

Karlsruhe, Germany, 2018-10-26

https://sschwarzer.com/en/

About me

Using Python since 1999

Software developer since 2000

Freelancer since 2005

Book “Workshop Python”, Addison-Wesley,
using the then brand new Python 2.2 ;-)

About 15 conference talks

Maintainer of ftputil (high-level FTP client library)
since 2002

Concurrency in Python 2 / 47

Overview

Basics

Concurrency approaches

Race conditions

Deadlocks

Queues

Higher-level concurrency approaches

Best practices

Concurrency in Python 3 / 47

Basics

reasons, terms

Reasons for concurrency

CPU intensive tasks
Speed up algorithms by executing parts in parallel.

Input/output
Other parts of the program can run while waiting for I/O.

Reactivity
While a GUI application executes some lengthy operation,
the application should still accept user interaction.

Concurrency in Python 5 / 47

Terms

Resource
Anything that’s used by an execution thread (not necessarily
an OS thread), for example simple variables, data structures,
files or network sockets.

Concurrency
There are multiple execution threads. They don’t have to
progress at the same time.

Parallelism
Execution threads run at the very same time (for example
on different CPU cores).

Atomic operation
A task that can’t be interrupted by another execution thread

Concurrency in Python 6 / 47

Concurrency approaches

multithreading, multiprocessing, event loop

Concurrency approaches
Multithreading

Concurrency of OS threads in a single process

Module threading in the standard library

Threads can share data in process memory

For CPython the global interpreter lock (GIL) applies

The GIL prevents the parallel execution of Python code.
The GIL is released during I/O operations.
Also, C extensions can release the GIL.

Concurrency in Python 8 / 47

Concurrency approaches
Multiprocessing

Concurrency of OS processes

Module multiprocessing in the standard library

Data transfer between processes via messages
or shared memory

When transferring messages, they must be serialized.
This is additional work.

Advantage of multiprocessing: no limitation of parallel
execution, not even for CPU-limited work. The GIL
is per Python process.

Concurrency in Python 9 / 47

Concurrency approaches
Event loop

Loop (“main loop”) detects events (examples: mouse click,
incoming network data)

Variants:

Depending on the event, a “handler” is called and processes
the event. Control returns to the main loop after the handler
execution.
Code looks sequential, but execution is switched to other code
if the event loop has to wait for I/O.
Both variants may be used in the same program.

An event loop implementation is in the package asyncio

in the standard library.

Concurrency in Python 10 / 47

Race conditions

definition, code example, explanation, fix

Race conditions
Definition

While a resource is modified by an execution thread,
another execution thread modifies or reads the resource.

Concurrency in Python 12 / 47

Race conditions
Code without protection against concurrent access

import threading, time # ‘sys.setswitchinterval‘ omitted

counter = 0

def count():

global counter

for _ in range(100):

counter += 1

threads = []

for _ in range(100):

thread = threading.Thread(target=count)

thread.start() # Start thread. Don’t confuse with ‘run‘.

threads.append(thread)

for thread in threads:

thread.join() # Wait until thread is finished.

print("Total:", counter)

Concurrency in Python 13 / 47

Race conditions
Output without protection against concurrent access

$ python3 race_condition.py

Total: 9857

$ python3 race_condition.py

Total: 9917

$ python3 race_condition.py

Total: 9853

$ python3 race_condition.py

Total: 9785

$ python3 race_condition.py

Total: 9972

$ python3 race_condition.py

Total: 9731

Concurrency in Python 14 / 47

Race conditions
Explanation – race condition because of concurrent access

This is only one of many possibilities.

Thread 2 reads the earlier value of counter because thread 1
hasn’t stored the new value yet.

Concurrency in Python 15 / 47

Race conditions
Code with protection against concurrent access

import threading, time # ‘sys.setswitchinterval‘ omitted

counter = 0

lock = threading.Lock()

def count_with_lock():

global counter

for _ in range(100):

with lock:

counter += 1 # Atomic operation

threads = []

for _ in range(100):

thread = threading.Thread(target=count_with_lock)

thread.start()

threads.append(thread)

...
Concurrency in Python 16 / 47

Deadlocks

definition, code example

Deadlocks
Definition

A deadlock happens if execution threads mutually
claim resources that the other execution threads need.

Example:

Both thread 1 and 2 need resources A and B to finish a task.

Thread 1 already holds resource A and wants resource B.

Thread 2 already holds resource B and wants resource A.

→ Deadlock!

Concurrency in Python 18 / 47

Deadlocks
Example code

Thread 1

with input_lock: # 1st

with output_lock: # blocks

input_line = input_fobj.readline()

Process input ...

output_fobj.write(output_line)

Thread 2

with output_lock: # 2nd

with input_lock: # blocks

input_line = input_fobj.readline()

Process input ...

output_fobj.write(output_line)

Concurrency in Python 19 / 47

Queues

code example with worker threads

Queues
Schema for the following example

Principle: put and get are atomic operations.

Concurrency in Python 21 / 47

Queues
Setup

import logging, queue, random, threading, time

logging.basicConfig(level=logging.INFO, format="%(message)s")

logger = logging.getLogger("queue_example")

WORKER_COUNT = 10

JOB_COUNT = 100

Needed to shut down threads without race conditions.

STOP_TOKEN = object()

job_queue = queue.Queue()

class Job:

def __init__(self, number):

self.number = number

Concurrency in Python 22 / 47

Queues
Worker thread

class Worker(threading.Thread):

def run(self):

while True:

job = job_queue.get(block=True)

if job is STOP_TOKEN:

break

self._process_job(job)

def _process_job(self, job):

Wait between 0 and 0.01 seconds.

time.sleep(random.random() / 100.0)

Atomic output

logger.info("Job number {:d}".format(job.number))

Concurrency in Python 23 / 47

Queues
Creation and execution of jobs

def main():

workers = []

Create and start workers.

for _ in range(WORKER_COUNT):

worker = Worker()

worker.start()

workers.append(worker)

Schedule jobs for workers.

for i in range(JOB_COUNT):

job_queue.put(Job(i))

Schedule stopping of workers.

for _ in range(WORKER_COUNT):

job_queue.put(STOP_TOKEN)

Wait for workers to finish.

for worker in workers:

worker.join()

Concurrency in Python 24 / 47

Higher-level concurrency approaches

concurrent.futures, active objects, process networks

concurrent.futures
Example

import concurrent.futures

import logging

import random

import time

WORKER_COUNT = 10

JOB_COUNT = 100

class Job:

def __init__(self, number):

self.number = number

Concurrency in Python 26 / 47

concurrent.futures
Example

def process_job(job):

Wait between 0 and 0.01 seconds.

time.sleep(random.random() / 100.0)

Atomic output

logger.info("Job number {:d}".format(job.number))

def main():

with concurrent.futures.ThreadPoolExecutor(

max_workers=WORKER_COUNT) as executor:

Distribute jobs.

futures = [executor.submit(process_job, Job(i))

for i in range(JOB_COUNT)]

Wait for work to finish.

for future in concurrent.futures.as_completed(futures):

pass

Concurrency in Python 27 / 47

concurrent.futures
Comparison with queue example

process job is now a function, no need to inherit from
threading.Thread and implement run

No queue needed

No error-prone token handling needed to stop the workers
at the right time

→ Use concurrent.futures if you can! :-)

Concurrency in Python 28 / 47

Active objects

Principle: Locks, queues or other synchronization mechanisms
are not part of the API of an object.

Synchronization, as far as needed, is hidden in high-level
methods.

Concurrency in Python 29 / 47

Active objects
Example – constructor

import queue

import threading

STOP_TOKEN = object()

class Adder:

def __init__(self):

self._in_queue = queue.Queue()

self._out_queue = queue.Queue()

self._worker_thread = threading.Thread(

target=self._work)

self._worker_thread.start()

Concurrency in Python 30 / 47

Active objects
Example – internal method

def _work(self):

while True:

work_item = self._in_queue.get(block=True)

if work_item is STOP_TOKEN:

break

result = work_item + 1000

self._out_queue.put(result)

Concurrency in Python 31 / 47

Active objects
Example – public methods

def submit(self, work_item):

self._in_queue.put(work_item)

def next_result(self):

return self._out_queue.get(block=True)

def stop(self):

self._in_queue.put(STOP_TOKEN)

self._worker_thread.join()

Concurrency in Python 32 / 47

Active objects
Example – usage

def main():

ITEM_COUNT = 100

adder = Adder()

for i in range(ITEM_COUNT):

Doesn’t block

adder.submit(i)

Do other things.

...

Collect results.

for _ in range(ITEM_COUNT):

May block

print(adder.next_result())

May block

adder.stop()

Concurrency in Python 33 / 47

Process networks

Processes receive input data and/or send output data.

Data transfer between processes by message passing

Processes can use different programming languages
if they use a message format that the communicating
processes understand.

Some overhead due to data serialization and protocols

Concurrency in Python 34 / 47

Process networks
With broker

Processes communicate with a broker service, but not
with each other.

Broker

Process Process Process Process

Broker protocol examples: AMQP, MQTT

Declarative configuration

Message persistence (optional)

Concurrency in Python 35 / 47

Process networks
Without broker

Processes communicate directly.

Process Process

Process

Process

Example: ZeroMQ

Concurrency in Python 36 / 47

Best practices

caveats, general design advice, approaches, shared state

Best practices
Caveats

The following “best practices” aren’t necessarily written down
in books or online, but are my recommendations.

Different advice may apply to different areas of your code.

Concurrency in Python 38 / 47

Best practices
General design advice

Concurrency is an optimization.
Like other optimizations, use it only if necessary.

Try to keep code simple and easy to understand.
In many cases this would mean queues or higher-level APIs
to communicate between threads or processes.

If you use low-level APIs, hide them. Don’t make locks,
queues etc. a part of the public interface.

Concurrency in Python 39 / 47

Best practices
Choose a concurrency approach

I/O-limited concurrency
multithreading
asyncio (for many concurrent tasks)
process networks

CPU-limited concurrency
multiprocessing
multithreading (if using extensions that can release the GIL)
process networks

GUI frameworks
usually come with their own event loop

Concurrent processes in different languages
process networks

Concurrency in Python 40 / 47

Best practices
Shared state

Be extremely careful not to read shared state while it may
be written. Even query methods may be problematic if they
implicitly update an internal cache of an object, for example.

Make sure the APIs you use from multiple threads are
thread-safe. You can only count on the documentation
because the code may be different in the next version.

Try to avoid shared state. Pass immutable objects or set up
the state before starting threads that access the state.

Concurrency involving shared state is difficult to test.
Don’t assume your code doesn’t have concurrency issues only
because it seems to run fine. Invest some time to create
a solid design. Have your code reviewed.

Concurrency in Python 41 / 47

Thank you for your attention! :-)

Questions?

Remarks?

Discussion?

info@sschwarzer.com

https://sschwarzer.com

Concurrency in Python 42 / 47

https://sschwarzer.com/en/

Appendices

links, asyncio example

Links

Dr. Dobb’s Parallel Computing
http://www.drdobbs.com/parallel (overview page)
http://www.drdobbs.com/212903586 (introduction)

“The problem with threads”
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-
2006-1.pdf

Design recommendations
https://stackoverflow.com/questions/1190206/, especially
https://stackoverflow.com/questions/1190206/threading-in-
python/1192114#1192114

Active object pattern
http://www.drdobbs.com/225700095

“Notes on structured concurrency”
https://vorpus.org/blog/notes-on-structured-concurrency-or-
go-statement-considered-harmful

Concurrency in Python 44 / 47

http://www.drdobbs.com/parallel
http://www.drdobbs.com/212903586
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://www2.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
https://stackoverflow.com/questions/1190206/
https://stackoverflow.com/questions/1190206/threading-in-python/1192114#1192114
https://stackoverflow.com/questions/1190206/threading-in-python/1192114#1192114
http://www.drdobbs.com/225700095
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful
https://vorpus.org/blog/notes-on-structured-concurrency-or-go-statement-considered-harmful

asyncio
Example – Setup

import asyncio

import logging

import random

logging.basicConfig(level=logging.INFO, format="%(message)s")

logger = logging.getLogger("asyncio_example")

JOB_COUNT = 100

class Job:

def __init__(self, number):

self.number = number

Concurrency in Python 45 / 47

asyncio
Example – asynchronous code

async def process_job(job):

Wait between 0 and 0.01 seconds.

await asyncio.sleep(random.random() / 100.0)

logger.info("Job number {:d}".format(job.number))

def main():

loop = asyncio.get_event_loop()

tasks = []

for i in range(JOB_COUNT):

task = loop.create_task(process_job(Job(i)))

tasks.append(task)

for task in tasks:

Similar to ‘Thread.start‘ plus ‘Thread.join‘

loop.run_until_complete(task)

loop.close()

Concurrency in Python 46 / 47

